# Monitoring Mangrove Carbon with Field and Earth Observing data

### Dr. Lola Fatoyinbo and Dr. Carl Trettin

Lola.Fatovinbo@nasa.gov

Carl.C.Trettin@usda.gov

NASA

Biospheric Sciences Laboratory NASA Goddard Space Flight Center Greenbelt, Maryland USA Southern Research Station USDA Forest Service Cordesville, SC USA



Lola Fatoyinbo



Marc Simard



Carl Trettin



David Lagomasino



Seung-Kuk Lee



Selena Chavez











University of Dar es Salaam Institute of Marine Sciences



Priscilla Baltezar



**Atticus Stovall** 

Richard Lucas



Pete Bunting

Aurelie Shapiro

Mwita Mangora



Wenwu Tang





### Goals – Improved Mapping and Monitoring of Coastal and Blue Carbon Ecosystem Carbon Stocks



When protected or restored, blue carbon ecosystems sequester and store carbon.
 When degraded or destroyed, these ecosystems emit the carbon they have stored for centuries into the atmosphere and oceans and become sources of greenhouse gases.

1.02 billion tons of carbon dioxide are being released annually from degraded coastal ecosystems
 equivalent to 19% of emissions from tropical deforestation globally\*.



•To better manage them, we need better estimates of their distribution, Carbon stocks and emissions

# Outline

- Earth Observations and Remote Sensing of Mangrove Forest Canopy Height
- Field inventory design and Field Data collection
- Biomass and Carbon stock
   estimation
- Mangrove Extent mapping, and Global Drivers of Change mapping
- Data Availability and Applications





# MANGROVES

These forests, found where the ocean meets land and sea water meets fresh water, provide a wealth of benefits for people but are losing their rightful place in nature.



# Why Mangroves?

- Numerous Ecosystem Services
  - Nutrient Cycling
  - Fishery Support
  - Biodiversity
  - Flood Control
  - Water Quality
  - Coastline Stabilization
  - Carbon Sequestration



NASA UIS

Thompson et al, 2019. Beyond ecosystem services: Using charismatic megafauna as flagship species for mangrove forest conservation







#### LETTERS

#### Predicting global patterns in mangrove forest biomass

James Hutchison<sup>1</sup>, Andrea Manica<sup>1</sup>, Ruth Swetnam<sup>2</sup>, Andrew Balmford<sup>1</sup>, & Mark Spalding<sup>3</sup>

RESEARCH

PAPER

nature

climate change

<sup>1</sup> Department <sup>2</sup> School of Sc <sup>3</sup> Department

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2015)

#### Keywords Mangrove; bi

ecology

Õ

ac

0

na

Journ

4

carbon; ecos global model

Correspond James Hutchi University of Tel/Fax: (+44 E-mail: jtwh34 Received 3 April 2013 Accepted

Editor Dr. Robin Nai

31 July 2013

[Corrected af 20, 2013: Ab: inadvertently

deedraphy geography

0

Environmental Services, Inc., Salt Springs, FL 32134-5430, <sup>7</sup>Environmental Science Asso St Ste 800, San Francisco, C/ <sup>8</sup>Departamento de Botânica, Federal de Santa Catarina, F 88010-970, Brazil, <sup>9</sup>Instituto Universidade de São Paulo, H Oceanográfico, 191, São Paul

Brazil, 10U.S. Fish and Wildli

<sup>1</sup>Departamento de Ecologia e

Universidade Federal de San

Florianópolis, SC 88040-900,

<sup>2</sup>Departamento de Engenhari

Ambiente, Universidade Fede Rio Tinto, PB 58297-000, Br

of Oceanography and Coasta

of the Coast and Environmer

University, Baton Rouge, LA

Propulsion Laboratory, MS 3

Oak Grove Drive, Pasadena,

<sup>5</sup>Centro Agronómico Tropical

y Enseñanza (CATIE), Apdo

Cartago 30501, Costa Rica, 6,

### The potential of Indonesian mangrove forests for global climate change mitigation

Scaling mangrove aboveground biomass

from site-level to continental-scale

A. S. Rovai1\*, P. Riul<sup>2</sup>, R. R. Twilley<sup>3</sup>, E. Castañeda-Moya<sup>3</sup>,

WIT D' A A MITH 3 M C' 14 M C'C

Daniel <mark>Murdiyarso<sup>1,2</sup>\*</mark>, Joko Purbopus Sigit D. Sasmito<sup>1</sup>, Daniel C. Donato<sup>6</sup>, S and Sofyan Kurnianto<sup>1,4</sup>

Mangroves provide a wide range of ecosys including nutrient cycling, soil formation, woo fish spawning grounds, ecotourism and carbor High rates of tree and plant growth, coupled w water-logged soils that slow decomposition, I long-term C storage. Given their global signifisinks of C, preventing mangrove loss would b climate change adaptation and mitigation strate reported that C stocks in the Indo-Pacific regi average 1,023 MgC ha-1 (ref. 2). Here, we est donesian mangrove C stocks are 1,083 ± 378 Mg up to the country-level mangrove extent of 2.9 Indonesia's mangroves contained on average 3.1 decades Indonesia has lost 40% of its mangrove result of aquaculture development<sup>5</sup>. This has res emissions of 0.07-0.21 Pg CO<sub>2</sub>e. Annual mangr tion in Indonesia is only 6% of its total forest I if this were halted, total emissions would be amount equal to 10-31% of estimated annual e land-use sectors at present. Conservation of car groves in the Indonesian archipelago should be component of strategies to mitigate climate cha Globally, deforestation and conversion of mans 1 . 0.00 0 40 D. CO

#### nature climate change



### Global patterns in mangrove soil carbon stocks

LETTERS

#### and losses

Trisha B. Atwood<sup>1,2\*</sup>, Rod M. Connolly<sup>3</sup>, Hanan Almahasheer<sup>4</sup> Carolyn J. Ewers Lewis<sup>5</sup>, Xabier Irigoien<sup>7,8</sup>, Jeffrey J. Kelleway<sup>6</sup> Oscar Serrano<sup>10,12</sup>, Christian J. Sanders<sup>13</sup>, Isaac Santos<sup>13</sup>, Andr and Catherine E. Lovelock<sup>1,15</sup>

PUBLISHED ONLINE: 27 JULY 2015 | DOI: 10.1038/NCLIMATE2734

Mangrove soils represent a large sink for otherwise rapidly recycled carbon the preservation of this important C stock. It is therefore imperative that gl susceptibility to remineralization are understood. Here, we present patterr latitudes, countries and mangrove community compositions, and estimat where mangroves occur. Global potential  $CO_2$  emissions from soils as a ~7.0 Tg  $CO_2$ e yr<sup>-1</sup>. Countries with the highest potential  $CO_2$  emissions from Malaysia (1,288 Gg  $CO_2$ e yr<sup>-1</sup>). The patterns described serve as a baseline t C stocks and potential emissions from mangrove deforestation.

#### ARTICLES https://doi.org/10.1038/s41558-018-0090-4

ARTICLES

nature climate change

### Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

Stuart E. Hamilton<sup>1\*</sup> and Daniel A. Friess<sup>2</sup>

PUBLISHED ONLINE: 26 JUNE 2017 | DOI: 10.1038/NCLIMATE3326

Mangrove forests store high densitie of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 to fC 0. emissions.

# **3-D Structure**

- Why do we care about mangrove structure?
- Height, Biomass and Carbon Stocks
- Ecosystem Condition (intact vs degraded)
- Ecosystem services
- Environmental drivers
- Management and restoration





### Remote Sensing Techniques: Mangrove 3D structure from Radar and Lidar

### TanDEM-X Digital Elevation Modal



IceSat/GLAS / IceSat-2



SRTM DEM

Global Ecosystem Dynamics Investigation (GEDI)



Airborne Lidar



### How do we measure 3D structure? Lidar





#### University of California

### Light Detection and Ranging (LiDAR)

- Ground-based, airborne or spaceborne.
- High resolution active remote sensing technology that measures the distance of reflected laser light.
- 3D point cloud, waveform or photons with x, y and z coordinates
- Canopy height = First returns minus last returns
- Canopy height is proportional to AGB
- ALS uncertainty for canopy height measurements is < 1 m
- Samples/footprints or small area wall to wall coverage





### Synthetic Aperture Radar Interferometry Radio Detection and Ranging (RaDAR)





#### • Synthetic Aperture Radar (SAR)

- Radar active illumination system
- Reflected signal or echo, is backscattered from the surface and received a fraction of a second later at the same antenna
- Can penetrate through clouds
- Covers larger ground area

### Interferometric SAR (InSAR)

- InSAR measure phase changes between two acquisitions
- Commonly used to quantify changes and deformation in the Earth
- Single pass InSAR: TanDEM-X (2010 present) and SRTM (2000)



### SAR Interferometry





# **Global Mangrove Height and Biomass**





### Global Canopy Height and Biomass Calibration





### The world's tallest Mangroves!





 $\bullet$ 

 $\mathbf{O}$ 

Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castañeda-Moya, E., Thomas, N. and Van der Stocken, T., 2019. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), p.40.

# Maximum Height Controls

 Main predictors of Canopy height are total annual precipitation, mean annual temperature and tropical cyclone landfall frequency.







# **Biomass Estimation Approaches**

• Paint-by-number

Allometric Models





# Mangrove Field Inventory





### A Carbon Inventory of Mangroves in the Zambezi River Delta, Mozambique



- Characterize ecosystem carbon stock of mangroves on the Zambezi River Delta;
- Provide a <u>baseline inventory</u> and framework for monitoring forest growth and change;
- Build capacity within Mozambique to <u>implement</u> <u>inventory and monitoring</u> <u>protocols to support REDD+</u> and other mitigation and adaptation strategies.

### Inventory Design – Objective

| There are two basic types of sampling design |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                              | Probability-based                                                                                                                                                                                                                                                     | Judgmental                                                                                                                                                                                              |  |  |  |
| Advantages                                   | <ul> <li>Provides ability to calculate uncertainty<br/>associated with estimates</li> <li>Provides reproducible results within<br/>uncertainty limits</li> <li>Provides ability to make statistical inferences</li> <li>Can handle decision error criteria</li> </ul> | <ul> <li>Can be less expensive than probabilistic designs. Can be very efficient with knowledge of the site</li> <li>Easy to implement</li> </ul>                                                       |  |  |  |
| Disadvantages                                | <ul> <li>Random locations may be difficult to locate</li> <li>An optimal design depends on an accurate conceptual model</li> </ul>                                                                                                                                    | <ul> <li>Depends upon expert knowledge</li> <li>Cannot reliably evaluate precision of<br/>estimates</li> <li>Depends on personal judgment to interpret<br/>data relative to study objectives</li> </ul> |  |  |  |



### Inventory Design – Steps





### Inventory Approach : Stratified Random Sampling Design



Data from Fatoyinbo and Simard, 2013

Stratification: Forest Canopy Height Because canopy height is functionally related to biomass, it's a sound basis for stratification





### Spatial Decision Support System



![](_page_23_Picture_2.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

### Field Sampling Plan Plots randomly located within strata

72 m

15 m

72 m

![](_page_25_Figure_1.jpeg)

### Measurements to Estimate Ecosystem C Pools

![](_page_26_Picture_1.jpeg)

Above-ground pools - live Tree biomass > 50 cm DBH >5 & < 50 cm DBH < 5 cm DBH Shrub layer + seedlings Above-ground pools- dead Tree biomass > 50 cm DBH >5 & < 50 cm DBH < 5 cm DBH Litter Coarse wood - down 5 categories **Below-ground pools** Tree biomass (live & dead) > 50 cm DBH >5 & < 50 cm DBH < 5 cm DBH <u>Soils</u> to 200 cm depth

![](_page_27_Figure_0.jpeg)

# Airborne Lidar: Zambezi Delta

![](_page_28_Figure_1.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Picture_4.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_30_Picture_5.jpeg)

### Mangrove Composition

![](_page_31_Figure_1.jpeg)

1

Height Class

ecology and management, 24(2), pp.173-186.

Basal Area (m² ha<sup>.1</sup>)

Carbon Distribution in Above- and Belowground Biomass Pools – Zambezi Delta

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_32_Picture_3.jpeg)

![](_page_32_Figure_4.jpeg)

Stringer, C.E., Trettin, C.C., Zarnoch, S.J. and Tang, W., 2015. Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. *Forest Ecology and Management*, *354*, pp.139-148.

### Ecosystem Carbon Stocks – Zambezi Delta

![](_page_33_Picture_1.jpeg)

![](_page_33_Figure_2.jpeg)

After: Stringer et al. 2015

### Mangrove Carbon Stock & Spatial Distribution

![](_page_34_Picture_1.jpeg)

| Height<br>Class | Total Carbon<br>Stock<br>(Mg C ha <sup>-1</sup> ) | Area (ha) | Total Carbon<br>(Gg) | Std. Err.<br>(Gg) |
|-----------------|---------------------------------------------------|-----------|----------------------|-------------------|
| 1               | 373.84                                            | 4,730     | 1.8                  | 0.14              |
| 2               | 434.05                                            | 10,536    | 4.6                  | 0.26              |
| 3               | 513.51                                            | 8,610     | 4.4                  | 0.23              |
| 4               | 545.51                                            | 5,522     | 3.0                  | 0.16              |
| 5               | 620.82                                            | 869       | 0.5                  | 0.04              |
|                 | Total                                             | 30,267    | 14.3                 | 0.41              |

![](_page_34_Picture_3.jpeg)

545.5 620.8

After: Stringer et al. 2015

![](_page_34_Figure_5.jpeg)

### Zambezi Delta AGB LiDAR-based Regressions

![](_page_35_Picture_1.jpeg)

![](_page_35_Figure_2.jpeg)

**Fatoyinbo, T**., Feliciano, E. A., Lagomasino, D., Lee, S. K., & Trettin, C. (2018). Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta. *Environmental Research Letters*.
## Zambezi Delta AGB Maps



**Fatoyinbo, T**., Feliciano, E. A., Lagomasino, D., Lee, S. K., & Trettin, C. (2018). Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta. *Environmental Research Letters*.

# Global Mangrove Biomass







|       |    | Country             | Maximum<br>Height (m) | Mean<br>height (m) | Max AG<br>Biomass<br>(Mg.ha <sup>-1</sup> ) | Mean AG<br>Biomass<br>(Mg.ha <sup>-1</sup> ) | Total AG<br>Biomass (Mg) | Total Carbon<br>(Mg) | Percent Global<br>Total Carbon |
|-------|----|---------------------|-----------------------|--------------------|---------------------------------------------|----------------------------------------------|--------------------------|----------------------|--------------------------------|
| g/ha) | 1  | Indonesia           | 47.5                  | 24.7               | 456.4                                       | 218.5                                        | 578,630,876              | 1,138,076,289        | 24.0                           |
| s (M  | 2  | Brazil              | 40.7                  | 20.3               | 260.5                                       | 94.6                                         | 97,367,688               | 354,985,555          | 7.5                            |
| omas  | 3  | Australia           | 28.8                  | 12.2               | 241.8                                       | 121.7                                        | 111,643,417              | 333,910,624          | 7.0                            |
| id br | 4  | Nigeria             | 33.9                  | 13.9               | 355.3                                       | 99.6                                         | 68,016,334               | 238,906,942          | 5.0                            |
| groui | 5  | Malaysia            | 35.6                  | 20.4               | 308.3                                       | 176.5                                        | 92,120,954               | 209,655,257          | 4.4                            |
| pove  | 6  | Papua New Guinea    | 45.8                  | 28.6               | 432.5                                       | 248.1                                        | 114,089,528              | 206,806,176          | 4.4                            |
| A     | 7  | Mexico              | 39.0                  | 11.7               | 243.3                                       | 41.2                                         | 26,958,637               | 202,515,476          | 4.3                            |
|       | 8  | Bangladesh          | 25.5                  | 15.5               | 421.2                                       | 173.0                                        | 73,916,017               | 170,612,893          | 3.6                            |
|       | 9  | Cuba                | 22.1                  | 10.1               | 97.5                                        | 31.1                                         | 12,790,694               | 124,960,442          | 2.6                            |
|       | 10 | Mozambique          | 20.4                  | 10.8               | 247.3                                       | 75.0                                         | 23,666,210               | 104,950,554          | 2.2                            |
|       |    | Total top 10 Carbon |                       |                    |                                             |                                              | 1,199,200,354            | 3,085,380,208        | 65.0                           |

Simard, Fatoyinbo et al, 2019

# We compare 17 different products for mapping mangrove biomass

| Extent            | Sensor/<br>Product                                                   | Product Resolution   | Technology                                            | Availability                     | Variable†                                                                         | Relevant Publications   |
|-------------------|----------------------------------------------------------------------|----------------------|-------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------|-------------------------|
|                   | [a] ALOS DEM                                                         | 30 m                 | Stereo Optical                                        | Open                             | Elevation                                                                         | [33]                    |
|                   | [b] SRTM                                                             | 30 m                 | C-Band SAR<br>Interferometry                          | Open                             | Ice-SAT-GLAS-<br>Corrected Mangrove<br>Canopy Height (Hmax)                       | [9], [40]               |
| Global            | [c-e] TanDEM-X                                                       | 12 m<br>30 m<br>90 m | X-Band SAR<br>Interferometry                          | Commercial<br>Commercial<br>Open | Geoid corrected height asl                                                        | [41]                    |
|                   | [f] ICESat-2-TanDEM-X                                                | 100 m                | Photon Counting LiDAR                                 | Open                             | TanDEM-X Elevation<br>corrected with ATL08<br>98 <sup>th</sup> percentile heights | <mark>[41], [42]</mark> |
|                   | [g] GEDI-TanDEM-X                                                    | -30 m                | Large-Footprint Full-<br>Waveform Spaceborne<br>LiDAR | Open                             | TanDEM-X Elevation<br>corrected with RH100<br>heights                             | [22]                    |
|                   | [h] LVIS                                                             | 50 m                 | Large-Footprint Full-<br>Waveform Airborne<br>LiDAR   | Open                             | RH100                                                                             | [39]                    |
| Local             | [i] F-SAR L band⁺                                                    | 30 m                 | Airborne L-Band<br>PolinSAR                           | Open                             | Modeled Canopy Height                                                             | [44], [45]              |
|                   | []] F-SAR P-band*                                                    | 30 m                 | Airborne P-Band<br>PolinSAR                           | Open                             | Modeled Canopy Height                                                             | [44], [45]              |
|                   | [k] UAVSAR                                                           | 30 m                 | Airborne L-Band<br>PolinSAR                           | Open                             | Modeled Canopy Height                                                             | [46]                    |
|                   | LVIS<br>(Regional Calibration)                                       | 50 m                 | Large-Footprint Full-<br>Waveform Airborne<br>LiDAR   | Open                             | AGBD*                                                                             | [46], *[47]             |
| Baseline Datasets | Global SRTM                                                          | 30 m                 | C-Band SAR<br>Interferometry                          | Open                             | AGBD*                                                                             | *[9], [36]              |
|                   | Avitabile <i>et al</i> 2016;<br>GEOCARBON                            | ~1 km                | SAR, Optical, Large<br>Footprint LiDAR                | Open                             | AGBD*                                                                             | *[48], *[49]            |
|                   | -IPCC Tier 1 value:<br>192 Mg/ha<br>-IPCC Tier 2 value:<br>215 Mg/ha | -                    | -                                                     | -                                | -IPCC mean mangrove<br>AGBD<br>-Plot-based                                        | *[18]                   |

<sup>†</sup>The predictor variable matched to plot data used for calibrating the allometric models of aboveground biomass. \*Aboveground biomass density estimates derived in the cited study. \*Height-biomass calibration is only evaluated due to limited spatial extent

## How does height-AGB allometry compare?







## Why is the global mangrove model estimating high?

- All comes down to calibration
- Need tall mangroves in calibration to predict AGB in tall mangroves.
- Solution is all in local calibration and better plot data

Stovall, A.E., Fatoyinbo, T., Thomas, N.M., Armston, J., Ebanega, M.O., Simard, M., Trettin, C., Zogo, R.V.O., Aken, I.A., Debina, M. and Kemoe, A.M.M., 2021. Comprehensive comparison of airborne and spaceborne SAR and LiDAR estimates of forest structure in the tallest mangrove forest on earth. *Science of Remote Sensing*, *4*, p.100034.



Next step:



## Create a better global mangrove height and AGB model.



From Rovai 2019 et al and SWAMP



# **Terrestrial Laser Scanning**





## **Terrestrial Laser Scanning**



equations in Pongara National Park, Gabon. Approximately 1200 tree objects were segmented and will be modeled.

•

.

## Stovall et al in prep

## Main Takeaways

- Current allometry may be biased
- TLS can improve biomass allometry
- Global implications for EO (GEDI).



Figure 5: (A) TLS-based *Rizophora* allometry (red) developed from 90 individual trees compared to commonly used Komiyama et al. (2005) mangrove allometry (blue). Dashed line indicates the limit of observations in the current mangrove allometry, above which predictions are highly-uncertain. (A) Residual variation in the diameter-based model with ~40% RMSE (red) across the observed diameter range.



# Drivers of Loss and Carbon emissions



IORR.

As coastal populations continue to grow and coastal tourism increases, mangroves are cleared to make way for infrastructure, businesses, hotels, and homes.

#### AQUACULTURE

To meet the world's growing demand for seafood at a time when overfishing has led to smaller catches, aquaculture, which is the process of farming seafood, has emerged as the fastest growing food sector.

#### AGRICULTURE

Mangroves are often cleared away to make room for agriculture, often for palm oil plantations and rice paddies, two crops that were responsible for 38% of mangrove loss from 2000 to 2012.



# Gulf of Carpentaria, Australia





## Global Loss Extent Mapping



Yawri Bay, Sierra Leonne

## **Random Forest Land Cover Change Classification**





Training Data: Landsat 7,8 imagery in classified regions



RF Classification: Landsat 7,8 imagery in all mangrove loss regions



Land Cover Change Classification

Erosion Sundarbans, Bangladesh 2000-2005 2005-2010 2010-2015



5 km



Shoreline Erosion

Commodities

Extreme Weather Events

Non-Productive Conversion

Coastal Squeeze

Goldberg, L., Lagomasino, D., Thomas, N., & Fatoyinbo, T. (2020). Global declines in human-driven mangrove loss. Global Change Biology.



A variety of natural, human, and combined human factors play a role in mangrove loss



\*More than half of the global losses have an anthropogenic origin, most of which are concentrated in Asia \*Nearly all land reclamation to commodities (agriculture & aquaculture) occurred within 8 countries

Goldberg et al, 2020

## Continental Loss Driver Trends 2000-2016



Settlement Commodities Non-Productive Conversion Extreme Weather Events Erosion

Extreme Weather Events









## **Key Findings:**

- Direct human-driven mangrove loss declined by 73% from 2000 to 2016.
- 62% of global losses from 2000-2016 resulted from land-use change.
- 80% of these human-driven losses occurred within six Southeast Asian nations (Myanmar, Malaysia, the Philippines, Thailand, and Vietnam)
- <u>https://www.mangrovelossdrivers.app/</u>

Goldberg, L., Lagomasino, D., Thomas, N. and Fatoyinbo, T. (2020), Global declines in human-driven mangrove loss. Glob Change Biol. doi:<u>10.1111/gcb.15275</u>



Landsat 8 Natural Color Composite

> TanDEM-X False-Color Composite

Mangrove Extent 2016

Gain

Loss

0 m **Canopy Height** 

30 m

500 Mg ha<sup>-1</sup> 0 Mg ha⁻¹

Aboveground Biomass





## Mangrove Carbon Assessment Tool (MCAT)

- Process-based biogeochemical model to simulate carbon sequestration, turnover and fluxes (atmosphere and water) in mangroves.
- Sensitive to climate, soil chemical and physical properties, tide and salinity.
- Tool provides capabilities for predicting C dynamics:
  - Monitoring
  - Restoration
  - Response to stressors



## Application of MCAT – Managed Mangroves, Indonesia 🐼 🐼



# Future carbon emissions fron global mangrove forest loss

Six regions accounted for 90% of the total potential CO<sub>2 eq</sub> future emissions







Adame, M.F., Connolly, R.M., Turschwell, M.P., Lovelock, C.E., Fatoyinbo, T., Lagomasino, D., Goldberg, L.A., Holdorf, J., Friess, D.A., Sasmito, S.D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J.B., Bryan-Brown, D. and Brown, C.J. (2021), Future carbon emissions from global mangrove forest loss. Glob Change Biol. <u>https://cor.org/10.1111/gcb.15571</u>

Activities that improve agricultural practices to reduce further expansion into mangrove areas and efforts to stabilize coastlines and restore former mangrove areas should be prioritized to decrease emissions from mangrove loss by the end of the century







# Data Availability



DAAC Home > Get Data > NASA Projects > Carbon Monitoring System (CMS) > User guide

Global Mangrove Distribution, Aboveground Biomass, and Canopy Height

#### Get Data

Documentation Revision Date: 2021-04-29

Dataset Version: 1.3

#### Summary

This dataset characterizes the global distribution, biomass, and canopy height of mangrove-forested wetlands based on remotely sensed and in situ field measurement data. Estimates of (1) mangrove aboveground biomass (AGB), (2) maximum canopy height (height of the tallest tree), and (3) basal-area weighted height (individual tree heights weighted in proportion to their basal area) for the nominal year 2000 were derived across a 30-meter resolution global mangrove ecotype extent map using remotely-sensed canopy height measurements and region-specific allometric models. Also provided are (4) in situ field measurement data for selected sites across a wide variety of forest structures (e.g., scrub, fringe, riverine and basin) in mangrove ecotypes of the global equatorial region. Within designated plots, selected trees were identified to species and diameter at breast height (DBH) and tree height was measured using a laser rangefinder or clinometer. Tree density (the number of stems) can be estimated for each plot and expressed per unit area. These data were used to derive plot-level allometry among AGB, basal area weighted height (Hba), and maximum canopy height (Hmax) and to validate the remotely sensed estimates.

Spatially explicit maps of mangrove canopy height and AGB derived from space-borne remote sensing data and in situ measurements can be used to assess local-scale geophysical and environmental conditions that may regulate forest structure and carbon cycle dynamics. Maps revealed a wide range of canopy heights, including maximum values (> 62 m) that surpass maximum heights of other forest types.

There are 348 data files in GeoTIFF format (.tif) with this dataset representing three data products for each of 116 countries. The in situ tree measurements are provided in a single .csv file.



#### DAAC Home > Get Data > NASA Projects > Carbon Monitoring System (CMS) > Landing page

## CMS: LiDAR Data for Mangrove Forests in the Zambezi River Delta, Mozambique, 2014

#### Overview

| DOI       | https://doi.org/10.3334/ORNLDAAC/1521 |  |  |  |
|-----------|---------------------------------------|--|--|--|
| Version   | 1                                     |  |  |  |
| Project   | смз                                   |  |  |  |
| Published | 2017-08-25                            |  |  |  |
| Updated   | 2017-12-06                            |  |  |  |
| Usage     | 159 downloads                         |  |  |  |
| Citations | 1 publication cited this dataset      |  |  |  |



**Spatial Coverage** 

**Temporal Coverage** 

2014-05-05



#### Description

La Download Data 2.6 GB

This data set provides high-resolution LiDAR point cloud data collected during surveys over mangrove forests in the Zambezi River Delta in Mozambique in May 2014. The data are arranged into 144 1- by 1-km tiles.

🖹 User Guide

https://daac.ornl.gov/CMS/guides/CMS\_Global\_Map\_Mangrove\_Canopy.html



# Data Availability NASA ORNL and Forest Service DAAC

- Lagomasino, D., T. Fatoyinbo, S. Lee, E. Feliciano, M. Simard, and C. Trettin. 2016. CMS: Mangrove Canopy Height Estimates from Remote Imagery, Zambezi Delta, Mozambique. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>http://dx.doi.org/10.3334/ORNLDAAC/1357</u>
- Fatoyinbo, T., and C. Trettin. 2017. CMS: LiDAR Data for Mangrove Forests in the Zambezi River Delta, Mozambique, 2014. ORNL DAAC, Oak Ridge, Tennessee, USA. <a href="https://doi.org/10.3334/ORNLDAAC/1521">https://doi.org/10.3334/ORNLDAAC/1521</a>
- Lagomasino, D., T. Fatoyinbo, S. Lee, E. Feliciano, C. Trettin, A. Shapiro, and M. Mwita. 2019. CMS: Mangrove Forest Cover Extent and Change across Major River Deltas, 2000-2016. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>https://doi.org/10.3334/ORNLDAAC/1670</u>
- Fatoyinbo, T., E. Feliciano, D. Lagomasino, S. Lee, and C. Trettin. 2017. CMS: Aboveground Biomass for Mangrove Forest, Zambezi River Delta, Mozambique. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>https://doi.org/10.3334/ORNLDAAC/1522</u>
- Simard, M., T. Fatoyinbo, C. Smetanka, V.H. Rivera-monroy, E. Castaneda, N. Thomas, and T. Van der stocken. 2019. Global Mangrove Distribution, Aboveground Biomass, and Canopy Height. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>https://doi.org/10.3334/ORNLDAAC/1665</u>
- Lagomasino, D., T. Fatoyinbo, S. Lee, E. Feliciano, C. Trettin, A. Shapiro, and M. Mwita. 2019. CMS: Mangrove Forest Cover Extent and Change across Major River Deltas, 2000-2016. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>https://doi.org/10.3334/ORNLDAAC/1670</u>
- Lagomasino, D., T. Fatoyinbo, S. Lee, E. Feliciano, C. Trettin, and M.C. Hansen. 2017. CMS: Mangrove Canopy Characteristics and Land Cover Change, Tanzania, 1990-2014. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>http://dx.doi.org/10.3334/ORNLDAAC/1377</u>
- Trettin, Carl C.; Dai, Zhaohua; Tang, Wenwu; Lagomasino, David; Thomas, Nathan; Lee, Seung-Kuk; Ebanega, Médard Obiang; Simard, Marc; Fatoyinbo, Temilola E.. (2022). Carbon stock inventory of mangroves, Pongara National Park, Gabon. USDA Forest Service Research Data Archive. <u>https://doi.org/10.2737/RDS-2020-</u>

<u>0040</u>.







#### www.mangrovescience.earthengine.app

### www.mangrovelossdrivers.app



© Mapbox Improve this map | © Mapbox © OpenStreetMap Improve this map







TRAINING

# ARSET - Remote Sensing for Mangroves in Support of the UN Sustainable Development Goals

PROGRAM AREA: ECOLOGICAL FORECASTING

HOME / JOIN THE MISSION / TRAINING

U

### **Mangrove Restoration**

Geography

Select a Country or Region

Global

**Explore Restoration Scores By:** 



Zoom in and click a mangrove area on map to view its statistics Click boxes below to change mangrove symbology on map

Typology



Ecosystem Services Value for Restored Mangroves

| Soil Organic Carbon<br>353,799,588 Mg                               | Aboveground<br>Carbon<br>68,561,410 Mg |                                                                          | People Protected 12,548,500 |  |  |
|---------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|-----------------------------|--|--|
| Commercial Fish Cato<br>Enhancement Value<br><b>996,677,000,000</b> | h                                      | Commercial Invert Catch<br>Enhancement Value<br><b>1,402,411,000,000</b> |                             |  |  |

#### View Reference Layers

Population Density

Future Urbanization

Drought

**Protected Areas** 

23

Esri, HERE





# Thank you

Global potential and limits of mangrove blue carbon for climate change mitigation

- Bundling other ecosystem services alongside carbon credits would increase the range of mangrove financing mechanisms such as coastal protection insurance
- Return-on-investment analyses will help to inform national and international policy interests in mangrove blue carbon and the small scale of current carbon project implementation





- $\sim$  20% of mangrove forests can qualify for blue carbon financing
- $\sim 10\%$  will be financially sustainable—contributing up to 29.8 MtCO<sub>2</sub>eyr<sup>-1</sup>
- Blue carbon financing is important at a national level, but has limited global potential







